
Copyright is held by the author / owner(s). 
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012. 
ISBN 978-1-4503-1435-0/12/0008 

Thern, the Nano Technology from John Carter’s Mars

Richard Pickler∗
Cinesite

Simon Stanley Clamp†
Cinesite

Artemis Oikonomopoulou‡
Cinesite

Figure 1: Close encounter with Thern

1 Introduction

Thern, or the Ninth Ray, as it was referred to in John Carter, cov-
ered a broad scope of related effects throughout the film. Twenty
different variations fell under the umbrella of Thern, ranging from
small standalone assets, to entire rooms filling the screen, and to
effects that were only vaguely recognizable as Thern. Along with
a wide range of concept art and reference footage of natural phe-
nomenon, we keyed on a few conceptual ideas from the director.
From ”somewhere between organic and mechanical” we focused on
a vegetation growth technique [Palubicki et al. 2009] with modifi-
cations specific to our needs. From ”fractal”, we derived a recursive
technique that we could direct between different levels depending
on how we wanted the viewer to interpret the image. Animation
grew out of disparate references and the ingenuity of the team, cul-
minating in a creative use of a very old algorithm.

2 Look

Early concept work at Cinesite produced a static model of a small
section of Thern. While this intricate prototype was hand modeled
and textured with traditional techniques, it was never an option for
the large scale set elements. L-Systems proved too difficult to direct
into the complicated structures needed, and a Voronoi based system
was rejected because the results were not visually organic and far
too regular. Ultimately, we developed a system based upon vegeta-
tion techniques entirely within Houdini. We implemented the , the
biggest challenge came when we had to make the growth loop back
upon itself. We accomplished this by turning the branch-avoidance
method into branch-attraction gradually over time.

Our initial brief on the structure described it as a fractal. Specif-
ically, if we were to zoom in enough, the same structure should
emerge to the viewer. Our original concept attempted this through
an intricate texture, which proved limiting in both artists’ time and
our animation abilities. Instead, we adopted a recursive concept
directly in our modeling workflow. We modeled the gross struc-
ture through one level of simulation, then after setting relative sizes
of individual branches and some manual massaging, we filled that
structure with the very same tool. Conceptually, the first simula-
tion is the larger structure the audience perceives, and the fill step is
what it was actually made of. When rendering this mass of curves,

∗e-mail: rpickler@gmail.com
†e-mail: ssc@cinesite.co.uk
‡e-mail: artemis@cinesite.co.uk

however, the initial images were noisy and the higher level structure
was lost. We borrowed from concepts used at other studios [Petro-
vic et al. 2003] to manipulate the normal of the high frequency ge-
ometry in order to bring out the higher level shapes of the model.
The lighters could then balance between the details and structure as
each shot required.

3 Animation

In an effort to maintain flexibility in our system, no matter how we
generated the geometry, we kept a strict division between the gen-
eration of the geometry and the animation. Despite the generation
happening through a growth algorithm, it would be difficult to di-
rect both visually pleasing geometry and an appropriate animation
at the same time. Therefore, we chose to animate our geometry
based on values created from a simple Dijkstra Algorithm [Dijkstra
1959]. This allowed us to completely change where the geometry
grew from and groom the speed of animation, significantly improv-
ing our reaction time to director requests.

Our Dijkstra implementation allowed us to select the starting point
we wanted to grow from, and based upon the cost along each edge,
determine at what time every line segment would animate. We
could vary the speed of each curve segment to guide the growth into
particular shapes, or even to produce subtle patterns in the leading
edges. The speed at which all segments would grow was expressed
in frames, and the Dijkstra algorithm would produce a rank for ev-
ery vertex which defined what frames it was animating on. Those
values were then used to define when the geometry moved. If the
values of the two vertices on a segment were greater than the cur-
rent frame, the geometry was simply deleted. If they were less, the
geometry was static. If the values straddled the current time, the
frame was normalized between the values and then fed through a
library of canned animation styles. These values were also passed
through to rendering, and fed into various shading parameters to
focus the eye on the leading edge of animation and blend back into
the static volume.

4 Acknowledgements

The full development of Thern happened with a great team build-
ing upon each other’s work. None of this would have been possible
without the creativity, collaboration, and hard work of everyone in-
volved.

References

DIJKSTRA, E. W. 1959. A note on two problems in con-
nexion with graphs. Numerische Mathematik 1, 269–271.
10.1007/BF01386390.

PALUBICKI, W., HOREL, K., LONGAY, S., RUNIONS, A., LANE,
B., MĚCH, R., AND PRUSINKIEWICZ, P. 2009. Self-organizing
tree models for image synthesis. In ACM SIGGRAPH 2009 pa-

pers, ACM, New York, NY, USA, SIGGRAPH ’09, 58:1–58:10.

PETROVIC, L., HENNE, M., AND ANDERSON, J. 2003. Volu-
metric methods for simulation and rendering of hair. Simulation,
06-08, 1–6.


